Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 530
Filtrar
1.
J Biol Chem ; 298(6): 101921, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35413285

RESUMO

The neurodegenerative disease Friedreich's ataxia arises from a deficiency of frataxin, a protein that promotes iron-sulfur cluster (ISC) assembly in mitochondria. Here, primarily using Mössbauer spectroscopy, we investigated the iron content of a yeast strain in which expression of yeast frataxin homolog 1 (Yfh1), oxygenation conditions, iron concentrations, and metabolic modes were varied. We found that aerobic fermenting Yfh1-depleted cells grew slowly and accumulated FeIII nanoparticles, unlike WT cells. Under hypoxic conditions, the same mutant cells grew at rates similar to WT cells, had similar iron content, and were dominated by FeII rather than FeIII nanoparticles. Furthermore, mitochondria from mutant hypoxic cells contained approximately the same levels of ISCs as WT cells, confirming that Yfh1 is not required for ISC assembly. These cells also did not accumulate excessive iron, indicating that iron accumulation into yfh1-deficient mitochondria is stimulated by O2. In addition, in aerobic WT cells, we found that vacuoles stored FeIII, whereas under hypoxic fermenting conditions, vacuolar iron was reduced to FeII. Under respiring conditions, vacuoles of Yfh1-deficient cells contained FeIII, and nanoparticles accumulated only under aerobic conditions. Taken together, these results informed a mathematical model of iron trafficking and regulation in cells that could semiquantitatively simulate the Yfh1-deficiency phenotype. Simulations suggested partially independent regulation in which cellular iron import is regulated by ISC activity in mitochondria, mitochondrial iron import is regulated by a mitochondrial FeII pool, and vacuolar iron import is regulated by cytosolic FeII and mitochondrial ISC activity.


Assuntos
Proteínas de Ligação ao Ferro , Ferro , Proteínas de Saccharomyces cerevisiae , Compostos Ferrosos/metabolismo , Ataxia de Friedreich/fisiopatologia , Humanos , Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Nanopartículas Metálicas , Mitocôndrias/metabolismo , Modelos Teóricos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectroscopia de Mossbauer , Vacúolos/metabolismo
2.
Cell Mol Life Sci ; 79(2): 74, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35038030

RESUMO

Friedreich Ataxia (FA) is a rare neuro-cardiodegenerative disease caused by mutations in the frataxin (FXN) gene. The most prevalent mutation is a GAA expansion in the first intron of the gene causing decreased frataxin expression. Some patients present the GAA expansion in one allele and a missense mutation in the other allele. One of these mutations, FXNI154F, was reported to result in decreased content of mature frataxin and increased presence of an insoluble intermediate proteoform in cellular models. By introducing this mutation into the murine Fxn gene (I151F, equivalent to human I154F) we have now analyzed the consequences of this pathological point mutation in vivo. We have observed that FXNI151F homozygous mice present low frataxin levels in all tissues, with no evidence of insoluble proteoforms. Moreover, they display neurological deficits resembling those observed in FA patients. Biochemical analysis of heart, cerebrum and cerebellum have revealed decreased content of components from OXPHOS complexes I and II, decreased aconitase activity, and alterations in antioxidant defenses. These mitochondrial alterations are more marked in the nervous system than in heart, precede the appearance of neurological symptoms, and are similar to those observed in other FA models. We conclude that the primary pathological mechanism underlying the I151F mutation is frataxin deficiency, like in patients carrying GAA expansions. Therefore, patients carrying the I154F mutation would benefit from frataxin replacement therapies. Furthermore, our results also show that the FXNI151F mouse is an excellent tool for analyzing tissue-specific consequences of frataxin deficiency and for testing new therapies.


Assuntos
Ataxia de Friedreich/genética , Proteínas de Ligação ao Ferro/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Mutação Puntual , Alelos , Animais , Comportamento Animal , Biomarcadores/metabolismo , Códon , Modelos Animais de Doenças , Feminino , Ataxia de Friedreich/fisiopatologia , Células HEK293 , Humanos , Íntrons , Proteínas de Ligação ao Ferro/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Mitocondriais/fisiopatologia , Mutação , Mutação de Sentido Incorreto , Fenótipo , Proteômica , Aumento de Peso
3.
Hum Brain Mapp ; 42(16): 5334-5344, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34523778

RESUMO

This magnetoencephalography (MEG) study addresses (i) how Friedreich ataxia (FRDA) affects the sub-second dynamics of resting-state brain networks, (ii) the main determinants of their dynamic alterations, and (iii) how these alterations are linked with FRDA-related changes in resting-state functional brain connectivity (rsFC) over long timescales. For that purpose, 5 min of resting-state MEG activity were recorded in 16 FRDA patients (mean age: 27 years, range: 12-51 years; 10 females) and matched healthy subjects. Transient brain network dynamics was assessed using hidden Markov modeling (HMM). Post hoc median-split, nonparametric permutations and Spearman rank correlations were used for statistics. In FRDA patients, a positive correlation was found between the age of symptoms onset (ASO) and the temporal dynamics of two HMM states involving the posterior default mode network (DMN) and the temporo-parietal junctions (TPJ). FRDA patients with an ASO <11 years presented altered temporal dynamics of those two HMM states compared with FRDA patients with an ASO > 11 years or healthy subjects. The temporal dynamics of the DMN state also correlated with minute-long DMN rsFC. This study demonstrates that ASO is the main determinant of alterations in the sub-second dynamics of posterior associative neocortices in FRDA patients and substantiates a direct link between sub-second network activity and functional brain integration over long timescales.


Assuntos
Córtex Cerebral/fisiopatologia , Conectoma , Ataxia de Friedreich/fisiopatologia , Magnetoencefalografia , Rede Nervosa/fisiopatologia , Adolescente , Adulto , Idade de Início , Córtex Cerebral/diagnóstico por imagem , Criança , Feminino , Ataxia de Friedreich/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
4.
Lancet Neurol ; 20(5): 362-372, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33770527

RESUMO

BACKGROUND: The European Friedreich's Ataxia Consortium for Translational Studies (EFACTS) investigates the natural history of Friedreich's ataxia. We aimed to assess progression characteristics and to identify patient groups with differential progression rates based on longitudinal 4-year data to inform upcoming clinical trials in Friedreich's ataxia. METHODS: EFACTS is a prospective, observational cohort study based on an ongoing and open-ended registry. Patients with genetically confirmed Friedreich's ataxia were seen annually at 11 clinical centres in seven European countries (Austria, Belgium, France, Germany, Italy, Spain, and the UK). Data from baseline to 4-year follow-up were included in the current analysis. Our primary endpoints were the Scale for the Assessment and Rating of Ataxia (SARA) and the activities of daily living (ADL). Linear mixed-effect models were used to analyse annual disease progression for the entire cohort and subgroups defined by age of onset and ambulatory abilities. Power calculations were done for potential trial designs. This study is registered with ClinicalTrials.gov, NCT02069509. FINDINGS: Between Sept 15, 2010, and Nov 20, 2018, of 914 individuals assessed for eligibility, 602 patients were included. Of these, 552 (92%) patients contributed data with at least one follow-up visit. Annual progression rate for SARA was 0·82 points (SE 0·05) in the overall cohort, and higher in patients who were ambulatory (1·12 [0·07]) than non-ambulatory (0·50 [0·07]). ADL worsened by 0·93 (SE 0·05) points per year in the entire cohort, with similar progression rates in patients who were ambulatory (0·94 [0·07]) and non-ambulatory (0·91 [0·08]). Although both SARA and ADL showed slightly greater worsening in patients with typical onset (symptom onset at ≤24 years) than those with late onset (symptom onset ≥25 years), differences in progression slopes were not significant. For a 2-year parallel-group trial, 230 (115 per group) patients would be required to detect a 50% reduction in SARA progression at 80% power: 118 (59 per group) if only individuals who are ambulatory are included. With ADL as the primary outcome, 190 (95 per group) patients with Friedreich's ataxia would be needed, and fewer patients would be required if only individuals with early-onset are included. INTERPRETATION: Our findings for stage-dependent progression rates have important implications for clinicians and researchers, as they provide reliable outcome measures to monitor disease progression, and enable tailored sample size calculation to guide upcoming clinical trial designs in Friedreich's ataxia. FUNDING: European Commission, Voyager Therapeutics, and EuroAtaxia.


Assuntos
Atividades Cotidianas , Progressão da Doença , Ataxia de Friedreich/complicações , Ataxia de Friedreich/fisiopatologia , Adulto , Estudos de Coortes , Europa (Continente) , Feminino , Ataxia de Friedreich/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Limitação da Mobilidade , Sistema de Registros , Fatores de Tempo , Adulto Jovem
5.
IUBMB Life ; 73(3): 543-553, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33675183

RESUMO

Friedreich Ataxia is a neuro-cardiodegenerative disease caused by the deficiency of frataxin, a mitochondrial protein. Many evidences indicate that frataxin deficiency causes an unbalance of iron homeostasis. Nevertheless, in the last decade many results also highlighted the importance of calcium unbalance in the deleterious downstream effects caused by frataxin deficiency. In this review, the role of these two metals has been gathered to give a whole view of how iron and calcium dyshomeostasys impacts on cellular functions and, as a result, which strategies can be followed to find an effective therapy for the disease.


Assuntos
Cálcio/metabolismo , Ataxia de Friedreich/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Ataxia de Friedreich/tratamento farmacológico , Ataxia de Friedreich/fisiopatologia , Homeostase , Humanos , Quelantes de Ferro/farmacologia , Proteínas de Ligação ao Ferro/química
6.
Cerebellum ; 20(3): 430-438, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33400236

RESUMO

Upper limb function for people with Friedreich ataxia determines capacity to participate in daily activities. Current upper limb measures available do not fully capture impairments related to Friedreich ataxia. We have developed an objective measure, the Ataxia Instrumented Measure-Spoon (AIM-S), which consists of a spoon equipped with a BioKin wireless motion capture device, and algorithms that analyse these signals, to measure ataxia of the upper limb during the pre-oral phase of eating. The aim of this study was to evaluate the AIM-S as a sensitive and functionally relevant clinical outcome for use in clinical trials. A prospective longitudinal study evaluated the capacity of the AIM-S to detect change in upper limb function over 48 weeks. Friedreich ataxia clinical severity, performance on the Nine-Hole Peg Test and Box and Block Test and responses to a purpose-designed questionnaire regarding acceptability of AIM-S were recorded. Forty individuals with Friedreich ataxia and 20 control participants completed the baseline assessment. Thirty individuals with Friedreich ataxia completed the second assessment. The sensitivity of the AIM-S to detect deterioration in upper limb function was greater than other measures. Patient-reported outcomes indicated the AIM-S reflected a daily activity and was more enjoyable to complete than other assessments. The AIM-S is a more accurate, less variable measure of upper limb function in Friedreich ataxia than existing measures. The AIM-S is perceived by individuals with Friedreich ataxia to be related to everyday life and will permit individuals who are non-ambulant to be included in future clinical trials.


Assuntos
Ataxia de Friedreich/diagnóstico , Extremidade Superior/fisiopatologia , Atividades Cotidianas , Adolescente , Adulto , Algoritmos , Criança , Pré-Escolar , Progressão da Doença , Ingestão de Alimentos , Feminino , Ataxia de Friedreich/fisiopatologia , Ataxia de Friedreich/reabilitação , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Movimento , Estudos Prospectivos , Reprodutibilidade dos Testes , Inquéritos e Questionários , Resultado do Tratamento , Tecnologia sem Fio , Adulto Jovem
7.
Ann Neurol ; 89(2): 212-225, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33068037

RESUMO

OBJECTIVE: Friedreich ataxia (FA) is a progressive genetic neurodegenerative disorder with no approved treatment. Omaveloxolone, an Nrf2 activator, improves mitochondrial function, restores redox balance, and reduces inflammation in models of FA. We investigated the safety and efficacy of omaveloxolone in patients with FA. METHODS: We conducted an international, double-blind, randomized, placebo-controlled, parallel-group, registrational phase 2 trial at 11 institutions in the United States, Europe, and Australia (NCT02255435, EudraCT2015-002762-23). Eligible patients, 16 to 40 years of age with genetically confirmed FA and baseline modified Friedreich's Ataxia Rating Scale (mFARS) scores between 20 and 80, were randomized 1:1 to placebo or 150mg per day of omaveloxolone. The primary outcome was change from baseline in the mFARS score in those treated with omaveloxolone compared with those on placebo at 48 weeks. RESULTS: One hundred fifty-five patients were screened, and 103 were randomly assigned to receive omaveloxolone (n = 51) or placebo (n = 52), with 40 omaveloxolone patients and 42 placebo patients analyzed in the full analysis set. Changes from baseline in mFARS scores in omaveloxolone (-1.55 ± 0.69) and placebo (0.85 ± 0.64) patients showed a difference between treatment groups of -2.40 ± 0.96 (p = 0.014). Transient reversible increases in aminotransferase levels were observed with omaveloxolone without increases in total bilirubin or other signs of liver injury. Headache, nausea, and fatigue were also more common among patients receiving omaveloxolone. INTERPRETATION: In the MOXIe trial, omaveloxolone significantly improved neurological function compared to placebo and was generally safe and well tolerated. It represents a potential therapeutic agent in FA. ANN NEUROL 2021;89:212-225.


Assuntos
Ataxia de Friedreich/tratamento farmacológico , Triterpenos/uso terapêutico , Acidentes por Quedas , Atividades Cotidianas , Adolescente , Adulto , Antioxidantes/metabolismo , Método Duplo-Cego , Teste de Esforço , Feminino , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/fisiopatologia , Humanos , Masculino , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais , Resultado do Tratamento , Adulto Jovem
8.
J Inherit Metab Dis ; 44(2): 502-514, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32677106

RESUMO

BACKGROUND: (+)-Epicatechin (EPI) induces mitochondrial biogenesis and antioxidant metabolism in muscle fibers and neurons. We aimed to evaluate safety and efficacy of (+)-EPI in pediatric subjects with Friedreich's ataxia (FRDA). METHODS: This was a phase II, open-label, baseline-controlled single-center trial including 10 participants ages 10 to 22 with confirmed FA diagnosis. (+)-EPI was administered orally at 75 mg/d for 24 weeks, with escalation to 150 mg/d at 12 weeks for subjects not showing improvement of neuromuscular, neurological or cardiac endpoints. Neurological endpoints were change from baseline in Friedreich's Ataxia Rating Scale (FARS) and 8-m timed walk. Cardiac endpoints were changes from baseline in left ventricular (LV) structure and function by cardiac magnetic resonance imaging (MRI) and echocardiogram, changes in cardiac electrophysiology, and changes in biomarkers for heart failure and hypertrophy. RESULTS: Mean FARS/modified (m)FARS scores showed nonstatistically significant improvement by both group and individual analysis. FARS/mFARS scores improved in 5/9 subjects (56%), 8-m walk in 3/9 (33%), 9-peg hole test in 6/10 (60%). LV mass index by cardiac MRI was significantly reduced at 12 weeks (P = .045), and was improved in 7/10 (70%) subjects at 24 weeks. Mean LV ejection fraction was increased at 24 weeks (P = .008) compared to baseline. Mean maximal septal thickness by echocardiography was increased at 24 weeks (P = .031). There were no serious adverse events. CONCLUSION: (+)-EPI was well tolerated over 24 weeks at up to 150 mg/d. Improvement was observed in cardiac structure and function in subset of subjects with FRDA without statistically significant improvement in primary neurological outcomes. SYNOPSIS: A (+)-epicatechin showed improvement of cardiac function, nonsignificant reduction of FARS/mFARS scores, and sustained significant upregulation of muscle-regeneration biomarker follistatin.


Assuntos
Antioxidantes/administração & dosagem , Catequina/administração & dosagem , Ataxia de Friedreich/tratamento farmacológico , Coração/diagnóstico por imagem , Adolescente , Criança , Ecocardiografia , Feminino , Ataxia de Friedreich/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Estudos Prospectivos , Índice de Gravidade de Doença , Resultado do Tratamento , Caminhada
9.
Neurobiol Dis ; 148: 105162, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33171227

RESUMO

Friedreich ataxia (FRDA), the most common autosomal recessive ataxia, is characterized by degeneration of the large sensory neurons and spinocerebellar tracts, cardiomyopathy, and increased incidence in diabetes. The underlying pathophysiological mechanism of FRDA, driven by a significantly decreased expression of frataxin (FXN), involves increased oxidative stress, reduced activity of enzymes containing iron­sulfur clusters (ISC), defective energy production, calcium dyshomeostasis, and impaired mitochondrial biogenesis, leading to mitochondrial dysfunction. The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcriptional factor playing a key role in mitochondrial function and biogenesis, fatty acid storage, energy metabolism, and antioxidant defence. It has been previously shown that the PPARγ/PPARγ coactivator 1 alpha (PGC-1α) pathway is dysregulated when there is frataxin deficiency, thus contributing to FRDA pathogenesis and supporting the PPARγ pathway as a potential therapeutic target. Here we assess whether MIN-102 (INN: leriglitazone), a novel brain penetrant and orally bioavailable PPARγ agonist with an improved profile for central nervous system (CNS) diseases, rescues phenotypic features in cellular and animal models of FRDA. In frataxin-deficient dorsal root ganglia (DRG) neurons, leriglitazone increased frataxin protein levels, reduced neurite degeneration and α-fodrin cleavage mediated by calpain and caspase 3, and increased survival. Leriglitazone also restored mitochondrial membrane potential and partially reversed decreased levels of mitochondrial Na+/Ca2+ exchanger (NCLX), resulting in an improvement of mitochondrial functions and calcium homeostasis. In frataxin-deficient primary neonatal cardiomyocytes, leriglitazone prevented lipid droplet accumulation without increases in frataxin levels. Furthermore, leriglitazone improved motor function deficit in YG8sR mice, a FRDA mouse model. In agreement with the role of PPARγ in mitochondrial biogenesis, leriglitazone significantly increased markers of mitochondrial biogenesis in FRDA patient cells. Overall, these results suggest that targeting the PPARγ pathway by leriglitazone may provide an efficacious therapy for FRDA increasing the mitochondrial function and biogenesis that could increase frataxin levels in compromised frataxin-deficient DRG neurons. Alternately, leriglitazone improved the energy metabolism by increasing the fatty acid ß-oxidation in frataxin-deficient cardiomyocytes without elevation of frataxin levels. This could be linked to a lack of significant mitochondrial biogenesis and cardiac hypertrophy. The results reinforced the different tissue requirement in FRDA and the pleiotropic effects of leriglitazone that could be a promising therapy for FRDA.


Assuntos
Ataxia de Friedreich/metabolismo , Proteínas de Ligação ao Ferro/efeitos dos fármacos , Gotículas Lipídicas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , PPAR gama/agonistas , Tiazolidinedionas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Ataxia de Friedreich/patologia , Ataxia de Friedreich/fisiopatologia , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neuritos/efeitos dos fármacos , Neuritos/patologia , Neurônios/metabolismo , Neurônios/patologia , Ratos
10.
Sensors (Basel) ; 20(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202927

RESUMO

The postural control assessments in patients with neurological diseases lack reliability and sensitivity to small changes in patient functionality. The appearance of pressure mapping has allowed quantitative evaluation of postural control in sitting. This study was carried out to determine the evaluations in pressure mapping and verifying whether they are different between the three sample groups (multiple sclerosis, spinal cord injury and Friedreich's ataxia), and to determine whether the variables extracted from the pressure mapping analysis are more sensitive than functional tests to evaluate the postural trunk control. A case series study was carried out in a sample of 10 adult patients with multiple sclerosis (n = 2), spinal cord injury (n = 4) and Friedreich's ataxia (n = 4). The tests applied were: pressure mapping, seated Lateral Reach Test, seated Functional Reach Test, Berg Balance Scale, Posture and Postural Ability Scale, Function in Sitting Test, and Trunk Control Test. The participants with Friedreich's ataxia showed a tendency to present a higher mean pressure on the seat of subject's wheelchair compared to other groups. In parallel, users with spinal cord injury showed a tendency to present the highest values of maximum pressure and area of contact. People with different neurological pathologies and similar results in functional tests have very different results in the pressure mapping. Although it is not possible to establish a strong statistical correlation, the relationships between the pressure mapping variables and the functional tests seem to be numerous, especially in the multiple sclerosis group.


Assuntos
Ataxia de Friedreich/diagnóstico , Esclerose Múltipla/diagnóstico , Equilíbrio Postural , Postura Sentada , Traumatismos da Medula Espinal/diagnóstico , Adulto , Ataxia de Friedreich/fisiopatologia , Humanos , Pessoa de Meia-Idade , Esclerose Múltipla/fisiopatologia , Reprodutibilidade dos Testes , Traumatismos da Medula Espinal/fisiopatologia
11.
Ann Clin Transl Neurol ; 7(6): 1050-1054, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32510804

RESUMO

Dentate nuclei (DN) are involved in cerebellar modulation of motor and cognitive functions, whose impairment causes ataxia and cerebellar cognitive affective syndrome (CCAS). Friedreich ataxia (FRDA) disease progression relates to degeneration of the dentate nucleus and dentato-thalamic pathways, causing cerebellar ataxia. Volumetric MRI also shows mild loss in the cerebellar cortex, brainstem, and motor cortex. Cognitive deficits occur in FRDA, but their relationship with ataxia progression is not fully characterized. We found a significant positive correlation between severity of patients' ataxia and more marked CCAS as assessed with the CCAS-Scale. This relation could be related to progressive DN impairment.


Assuntos
Sintomas Afetivos/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Progressão da Doença , Ataxia de Friedreich/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Adolescente , Adulto , Sintomas Afetivos/etiologia , Criança , Disfunção Cognitiva/etiologia , Ataxia de Friedreich/complicações , Humanos , Pessoa de Meia-Idade , Transtornos dos Movimentos/etiologia , Adulto Jovem
12.
Sci Rep ; 10(1): 6095, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32269244

RESUMO

The common clinical symptoms of Friedreich's ataxia (FRDA) include ataxia, muscle weakness, type 2 diabetes and heart failure, which are caused by impaired mitochondrial function due to the loss of frataxin (FXN) expression. Endurance exercise is the most powerful intervention for promoting mitochondrial function; however, its impact on FRDA has not been studied. Here we found that mice with genetic knockout and knock-in of the Fxn gene (KIKO mice) developed exercise intolerance, glucose intolerance and moderate cardiac dysfunction at 6 months of age. These abnormalities were associated with impaired mitochondrial respiratory function concurrent with reduced iron regulatory protein 1 (Irp1) expression as well as increased oxidative stress, which were not due to loss of mitochondrial content and antioxidant enzyme expression. Importantly, long-term (4 months) voluntary running in KIKO mice starting at a young age (2 months) completely prevented the functional abnormalities along with restored Irp1 expression, improved mitochondrial function and reduced oxidative stress in skeletal muscle without restoring Fxn expression. We conclude that endurance exercise training prevents symptomatic onset of FRDA in mice associated with improved mitochondrial function and reduced oxidative stress. These preclinical findings may pave the way for clinical studies of the impact of endurance exercise in FRDA patients.


Assuntos
Ataxia de Friedreich/prevenção & controle , Condicionamento Físico Animal/métodos , Corrida , Animais , Ataxia de Friedreich/genética , Ataxia de Friedreich/fisiopatologia , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Estresse Oxidativo
13.
Artigo em Russo | MEDLINE | ID: mdl-32105265

RESUMO

AIM: To study a methylation profile of FXN gene and its influence on the clinical phenotype of Friedreich's desease (FD). MATERIAL AND METHODS: The methylation pattern was analyzed in 17 patients with FD. Forty-five CpG-sites in the promoter region and the region of intron 1 of FXN: before the GAA-expansion (UP-GAA) and after the GAA-expansion (DOWN-GAA), were studied. RESULTS: Correlations between the methylation level of CpG-sites in UP-GAA and DOWN-GAA and the number of GAA repeats in both expanded FXN alleles in patients with FD were found. An analysis revealed an earlier onset and a more severe course of FD in cases with hypermethylation of several CpG-sites in the UP-GAA region. The correlation between the methylation pattern and the presence of extraneural manifestations of FD was also revealed. In FD patients with cardiomyopathy, a hypomethylated CpG-site in the promoter region was found. In FD patients with carbohydrate metabolism disorders, two hypomethylated CpG-sites in the DOWN-GAA region were observed. CONCLUSION: The results indicate a significant contribution of epigenetic modifications of FXN to the clinical presentation of FA.


Assuntos
Epigênese Genética , Ataxia de Friedreich/genética , Ataxia de Friedreich/fisiopatologia , Alelos , Ilhas de CpG/genética , Metilação de DNA , Humanos , Íntrons/genética , Regiões Promotoras Genéticas/genética , Expansão das Repetições de Trinucleotídeos/genética
14.
J Neuroophthalmol ; 40(2): 213-217, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31977662

RESUMO

BACKGROUND: The primary objective was to determine the association of patient-reported vision-specific quality of life to disease status and visual function in patients with Friedreich's ataxia (FRDA). METHODS: Patients with FRDA were assessed with the 25-Item National Eye Institute Visual Functioning Questionnaire (NEI-VFQ-25) along with measures of disease status (ataxia stage) and visual function (low- and high-contrast letter acuity scores). The relations of NEI-VFQ-25 scores to those for disease status and visual function were examined. RESULTS: Scores for the NEI-VFQ-25 were lower in patients with FRDA (n = 99) compared with published disease-free controls, particularly reduced in a subgroup of FRDA patients with features of early onset, older age, and abnormal visual function. CONCLUSIONS: The NEI-VFQ-25 captures the subjective component of visual function in patients with FRDA.


Assuntos
Ataxia de Friedreich/complicações , Qualidade de Vida , Transtornos da Visão/psicologia , Acuidade Visual , Adolescente , Adulto , Feminino , Ataxia de Friedreich/fisiopatologia , Ataxia de Friedreich/psicologia , Humanos , Masculino , Inquéritos e Questionários , Transtornos da Visão/etiologia , Adulto Jovem
15.
Cerebellum ; 19(2): 182-191, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31898277

RESUMO

Friedreich ataxia (FRDA) has been associated with functional abnormalities in cerebral and cerebellar networks, particularly in the ventral attention network. However, how functional alterations change with disease progression remains largely unknown. Longitudinal changes in brain activation, associated with working memory performance (N-back task), and grey matter volume were assessed over 24 months in 21 individuals with FRDA and 28 healthy controls using functional and structural magnetic resonance imaging, respectively. Participants also completed a neurocognitive battery assessing working memory (digit span), executive function (Stroop, Haylings), and set-shifting (Trail Making Test). Individuals with FRDA displayed significantly increased brain activation over 24 months in ventral attention brain regions, including bilateral insula and inferior frontal gyrus (pars triangularis and pars opercularis), compared with controls, but there was no difference in working memory (N-back) performance between groups. Moreover, there were no significant differences in grey matter volume changes between groups. Significant correlations between brain activations and both clinical severity and age at disease onset were observed in FRDA individuals only at 24 months. There was significant longitudinal decline in Trail Making Test (TMT) difference score (B-A) in individuals with FRDA, compared with controls. These findings provide the first evidence of increased longitudinal activation over time in the cerebral cortex in FRDA, compared with controls, despite comparable working memory performance. This finding represents a possible compensatory response in the ventral attention network to help sustain working memory performance in individuals with FRDA.


Assuntos
Córtex Cerebral/fisiopatologia , Ataxia de Friedreich/fisiopatologia , Memória de Curto Prazo/fisiologia , Adulto , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino
16.
Neurol Sci ; 41(6): 1577-1587, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31993871

RESUMO

BACKGROUND: The use of standardized tools and objective measurements is essential to test the effectiveness of new drugs or rehabilitative protocols. Friedreich's ataxia (FRDA) patients with severe disease are often unable to perform the quantitative measurement tests currently used. AIM: The purpose of our study was to develop an easy-to-use application, for touchscreen devices, able to quantify the degree of upper limb movement impairment in patients with severe Friedreich's ataxia. The APP, which we named "Twelve-Red-Squares App-Coo-Test" (12-RSACT), assesses the upper limb ataxia by measuring the test execution time. METHODS: All patients were clinically evaluated using the Composite Cerebellar Functional Severity (CCFS) and the Scale for the Assessment and Rating of Ataxia (SARA). We recruited 92 healthy subjects and 36 FRDA patients with a SARA mean value of 28.8.1 ± 8.2. All participants in our study underwent upper limb movement assessment using the new 12-RSACT, the Click Test, and a well-established system, i.e., the Nine-Hole Peg Test (9HPT). RESULTS: We observed a strong linear correlation between the measurements obtained with the 12-RSACT and those obtained with 9HPT, Click Test, CCFS, and SARA. The 12-RSACT was characterized by excellent internal consistency and intra-rater and test-retest reliability. The minimal detectable change (MDC%) was excellent too. Additionally, the 12-RSACT turned out to be faster and easier to perform compared with the 9HPT. CONCLUSION: The 12-RSACT is an inexpensive test and is easy to use, which can be administered quickly. Therefore, 12-RSACT is a promising tool to assess the upper limb ataxia in FRDA patients and even those with severe diseases.


Assuntos
Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/fisiopatologia , Destreza Motora/fisiologia , Testes Neuropsicológicos/normas , Índice de Gravidade de Doença , Extremidade Superior/fisiopatologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
17.
J Neurophysiol ; 123(2): 718-725, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693434

RESUMO

Friedreich's ataxia (FA) is an inherited disease that causes degeneration of the nervous system. Features of FA include proprioceptive and cerebellar deficits leading to impaired muscle coordination and, consequently, dysmetria in force and time of movement. The aim of this study is to characterize dysmetria and its association to disease severity. Also, we examine the neural mechanisms of dysmetria by quantifying the EMG burst area, duration, and time-to-peak of the agonist muscle. Twenty-seven individuals with FA and 13 healthy controls (HCs) performed the modified Functional Ataxia Rating Scale and goal-directed movements with the ankle. Dysmetria was quantified as position and time error during dorsiflexion. FA individuals exhibited greater time but not position error than HCs. Moreover, time error correlated with disease severity and was related to increased agonist EMG burst. Temporal dysmetria is associated to disease severity, likely due to altered activation of the agonist muscle.NEW & NOTEWORTHY For the first time, we quantified spatial and temporal dysmetria and its relation to disease severity in Friedreich's ataxia (FA). We found that FA individuals exhibit temporal but not spatial dysmetria relative to healthy controls. Temporal dysmetria correlated to disease severity in FA and was predicted from an altered activation of the agonist muscle. Therefore, these results provide novel evidence that FA exhibit temporal but not spatial dysmetria, which is different from previous findings on SCA6.


Assuntos
Pé/fisiopatologia , Ataxia de Friedreich/fisiopatologia , Atividade Motora/fisiologia , Músculo Esquelético/fisiopatologia , Adolescente , Adulto , Criança , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Fatores de Tempo , Adulto Jovem
18.
J Neurol ; 267(2): 350-358, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31641877

RESUMO

BACKGROUND: Recent studies have suggested the presence of a significant atrophy affecting the cerebellar cortex in Friedreich ataxia (FRDA) patients, an area of the brain long considered to be relatively spared by neurodegenerative phenomena. Cognitive deficits, which occur in FRDA patients, have been associated with cerebellar volume loss in other conditions. The aim of this study was to investigate the correlation between cerebellar volume and cognition in FRDA. METHODS: Nineteen FRDA patients and 20 healthy controls (HC) were included in this study and evaluated via a neuropsychological examination. Cerebellar global and lobular volumes were computed using the Spatially Unbiased Infratentorial Toolbox (SUIT). Furthermore, a cerebellar voxel-based morphometry (VBM) analysis was also carried out. Correlations between MRI metrics and clinical data were tested via partial correlation analysis. RESULTS: FRDA patients showed a significant reduction of the total cerebellar volume (p = 0.004), significantly affecting the Lobule IX (p = 0.001). At the VBM analysis, we found a cluster of significant reduced GM density encompassing the entire lobule IX (p = 0.003). When correlations were probed, we found a direct correlation between Lobule IX volume and impaired visuo-spatial functions (r = 0.58, p = 0.02), with a similar correlation that was found between the same altered function and results obtained at the VBM (r = 0.52; p = 0.03). CONCLUSIONS: With two different image analysis techniques, we confirmed the presence of cerebellar volume loss in FRDA, mainly affecting the posterior lobe. In particular, Lobule IX atrophy correlated with worse visuo-spatial abilities, further expanding our knowledge about the physiopathology of cognitive impairment in FRDA.


Assuntos
Cerebelo/patologia , Disfunção Cognitiva/fisiopatologia , Ataxia de Friedreich/patologia , Ataxia de Friedreich/fisiopatologia , Neuroimagem/métodos , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Cerebelo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Feminino , Ataxia de Friedreich/complicações , Ataxia de Friedreich/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Ann Clin Transl Neurol ; 7(1): 94-104, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31854120

RESUMO

OBJECTIVE: Friedreich ataxia (FRDA) is the commonest hereditary ataxia in Caucasians. Most patients are homozygous for expanded GAA triplet repeats in the first intron of the frataxin (FXN) gene, involved in mitochondrial iron metabolism. Here, we used magnetoencephalography (MEG) to characterize the main determinants of FRDA-related changes in intrinsic functional brain architecture. METHODS: Five minutes of MEG signals were recorded at rest from 18 right-handed FRDA patients (mean age 27 years, 9 females; mean SARA score: 21.4) and matched healthy individuals. The MEG connectome was estimated as resting-state functional connectivity (rsFC) matrices involving 37 nodes from six major resting state networks and the cerebellum. Source-level rsFC maps were computed using leakage-corrected broad-band (3-40 Hz) envelope correlations. Post hoc median-split was used to contrast rsFC in FRDA patients with different clinical characteristics. Nonparametric permutations and Spearman rank correlation test were used for statistics. RESULTS: High rank correlation levels were found between rsFC and age of symptoms onset in FRDA mostly between the ventral attention, the default-mode, and the cerebellar networks; patients with higher rsFC developing symptoms at an older age. Increased rsFC was found in FRDA with later age of symptoms onset compared to healthy subjects. No correlations were found between rsFC and other clinical parameters. CONCLUSION: Age of symptoms onset is a major determinant of FRDA patients' intrinsic functional brain architecture. Higher rsFC in FRDA patients with later age of symptoms onset supports compensatory mechanisms for FRDA-related neural network dysfunction and position neuromagnetic rsFC as potential marker of FRDA neural reserve.


Assuntos
Córtex Cerebral/fisiopatologia , Conectoma , Ataxia de Friedreich/fisiopatologia , Rede Nervosa/fisiopatologia , Adolescente , Adulto , Idade de Início , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...